

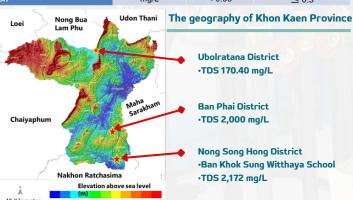
Design of Drinking Water Production System using Ground Water as a Water Source

Environmental Engineering Project ENV 05

Introduction

The Nong Song Hong area faces challenges with saline groundwater. In 2013, a reverse osmosis (RO) system was installed with Department of Groundwater Resources funding. However, membrane fouling led to unsustainable operational costs and system shutdown, forcing the school to rely on bottled water.

The existing pre-treatment system, consisting of granular filtration and polypropylene cartridge filters, only removes suspended solids. This limited filtration fails to prevent membrane fouling-where contaminants accumulate on the membrane surface and pores-resulting in frequent cleaning and costly replacements. To address these issues, a new pre-treatment unit is designed to reduce membrane fouling, extend membrane lifespan, and minimize operational costs.


Objectives

- 1. To re-design and improve the existing RO drinking water production system at Ban Khok Sung Witthaya School, using brackish groundwater as the raw water source
- 2. To estimate the installation and operation costs of the RO system to determine the return on investment (ROI) for drinking water production.

Ground water characteristics

Parameter	Unit	Groundwater	Recommended for a water source for drinking water
Physical attributes	Pt-Co	colorless	15
Turbidity	NTU	1.94	< 5
Total suspended solids (TSS)	mg/L	< 10	
Total dissolved solids (TDS)	mg/L	2,172	< 500
pН	-	6.58	6.5 - 8.5
Total hardness	mg/L as CaCO ₃	530	< 100
Alkalinity	mg/L	269	20 - 500
Conductivity	μS/cm	2,980	200-800
Chloride	mg/L	702	≤ 250
Total organic carbon (TOC)	μg/L	312.7±0.73%	2,000-4,000
Iron	mg/L	< 0.05	≤ 0.3

 The Total Dissolved Solids (TDS) in groundwater varies significantly by region Northern areas: Lower TDS concentrations. Southern areas: Elevated TDS levels, attributed to dissolved minerals and rock salt deposits

Design criteria & Specification

Granular filtration removes suspended solids in the water.

Anthracite is selected as filer media.

Filtration M	ledia Type	Filtration Rate (m³/m² hr)		Design Value (m³/m² hr)		
Anthr	acite	4.9-12.2		8.3		
Media Type	ES (mm)	UC	Layer Thickness (mm)		Specific Gravity	
Anthracite	0.7-1.7	1.75	450-750		1.4	

Granular activated carbon removes color, odor, and taste

• GAC can remove organic matter and prevent organic fouling for RO membrane.

Physical Properties of Activated Carbon (GAC)	Unit	Values
True Density (No Internal Void)	g/cm³	2.0 - 2.1
Bulk Density (Dry, with Internal Void)	g/cm ³	0.4 - 0.5
Pore Volume	cm³/g	0.8 - 1.20
Internal Surface Area	m²/g	600 - 1,600
Effective Size (ES)	mm	0.5 - 1.3
Uniformity Coefficient	mm	1.4 - 2.4
Activated Carbon Filter Design	Unit	Values
Filtration Rate	m³/m²•hr	2.4 - 14.4
Filtration Rate for Color, Odor, and Taste Removal	m³/m²•hr	9.6 - 14.4
Contact Time	min	8.0 - 30.0
Minimum Filter Layer Thickness	m	0.6

<u>lon exchange resin</u> removes cations (Ca2+ and Mg2+) by exchanging them with Na+, preventing membrane fouling from scale buildup.

Specification	Reference Values
Flow rate through the ion exchange layer	40 m ³ / 1 m ³ of ion
Surface Loading Rate	 Long-term: 15 m³/ m² hr.
Surface Loading Nate	- Short-term: 20 m³/ m² hr.
Ion Exchange layer expansion during backwash	50-75%
Brine flow rate during regeneration	Should not exceed 7 m ³ / hr. per 1 m ³ of Ion Exchange
Depth of the ion exchange layer	> 0.6 m

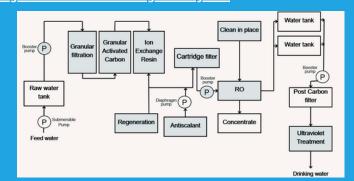
<u>Cartridge filter</u> removes particles to prevent particle fouling

Туре	Micron Rating	Cartridge Length
HF.Zs	05 = 5 μm	101.6 cm
) mambezaa is dosia	and to comove NaCl from brace	kich acquadwatec

is designed to remove Naci II off ackising outlowater.

Model	(m³/day)	Rejection	Rejection	(m²)	Outer Wrap
AG4040FM	9.1	99.50%	99.00%	7.9	Fiberglass
107-400	and the constant of the state		l bankada ka sa		Line water

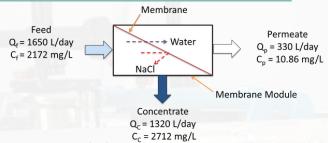
<u>UV sterilization system</u> deactivates virus and bacteria to produce safe drinking water.

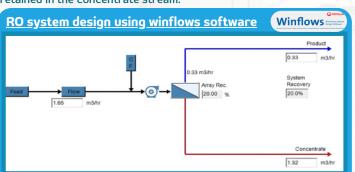

Specification	Details
Model	UVF-15W
Flow rate	8 LPM (0.5 m³/Hrs)
Voltage (Power/Lamp)	20W/15W
Power Supply	220 VAC
LxWxH (cm)	55 x 15.5 x 16.5
Inlet / Outlet	Male 3/4"
Operating Pressure (Bar)	4.2 Max
Temp (°C)	2-40
Body Material	Stainless Steel 304
UV Lamp Type	2 pin double-ended

Germicidal output/input	%	30–40	25–35	10–15
Type of \	Vater		sorbance, /cm)	 nsmittance IV ₂₅₄ , (%)
Surface water everse osmo		0.0458	-0.0044	90–99

Low Pressure Low Pressure

Medium

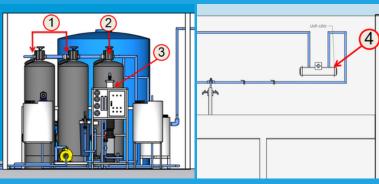




Design and calculation results

- Reverse osmosis (RO) separates dissolved solids from water using a semi-permeable membrane.
- The permeate (filtered water) has low concentration of dissolved solids, achieving up to 99.5% rejection of NaCl.
- · Dissolved solids that cannot pass through the membrane are retained in the concentrate stream.

					1.32
System Data			Sin	gle Pass De	esign
Temperature: C	RO-1	:25.0	0		
				RO 1	
Feed Flow to 1st Stage H	ousing	m³/h	r	1.65	
Feed Pressure		psi		205.75	
Array Recovery		%		20.00	
Permeate Flow		m³/h	r	0.33	
Split Permeate Flow		m ³ /h	r	0.00	
Pump Summary					
Main Pump				RO 1	
Feed Flow		m³/h	r	1.65	
Inlet Press	sure	psi		0.00	
Discharge	Pressure	psi		205.75	
Total Effici	ency	%		82.88	
Power		kW		0.78	
Total Power Consumption		kW		0.78	
Parameter	Feed		Product	Concent	rate
Alkalinity, PPM CaCO3	1	20	0.8		149.79
TDS, mg/l	2476.	.33	17.74	3	091.01
pН	6.	.58	4.8		6.66
LSI	-4.	.59	-10.33		-4.35
Stiff Davis	-4.	79	0		-4.53


Estimation cost

Purchasing Drinking Water

- No installation cost
- Water purchase cost = 83,300 THB/year
- Initial capital investment = 283,048.79 THB
- Operation cost = 38,412.72 THB/year
- Payback Period = 6.31 years

Equations for the design

1. Anthracite and GAC filters

Reynold number

$$R = \frac{\Phi dV_a}{U}$$

Drag coefficient

$$C_d = \frac{24}{R} + \frac{3}{\sqrt{R}} + 0.34$$
Head loss through media

and Underdrain

$$h_{L} = \frac{1.067V_{a}^{2}D}{\Phi g\epsilon^{4}} x \frac{C_{D}f}{d}$$
 Porosity of expanded bed

$$V_{\rm s} = \sqrt{\frac{4}{3} \frac{g}{C_d}} (SG - 1) d$$

2. Ion exchange resin

The amount of resin

$$Equivalent \ (gm-eq) = \frac{g}{Eq-Wt}$$

$$Equivalent \ weight = \frac{Molecular \ Weight(M.W.)}{2}$$

Water hardness

 $M^{2+}in mg/l \times 50$ Hardness in $\frac{mg}{l}$ as $CaCO_3 = \frac{M^{e+ln} mg fl \times 50}{Equivalent weight of M^{2+}}$

3. RO system

Water flux :

 $J_w = k_w (\triangle P - \triangle \pi) = Q_P/A$

Recovery: $r = Q_p / Q_f * 100$

Rejection:

 $R = (C_f - C_p) / C_f * 100$

 $P_{tm} = (P_f + P_c)/2 - P_p$

Pressure drop:

Pressure drop = P_f - P_p

Flow balance:

 $Q_f = Q_p + Q_c$

Mass balance $Q_f C_f = Q_p C_p + Q_c C_c$

Osmotic pressure:

 $\triangle \pi = (C / M)*RT$

4.UV sterilization system

Reactor Volume

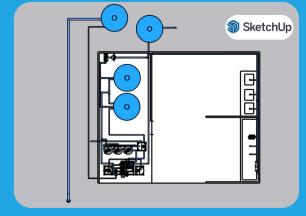
$$V = rac{\pi (D-d)^2 h}{4}$$
 Surface area of UV lamp

 $A = 2\pi rh$

Absorption coefficient $\propto = 2.303 k_A(\lambda)$

Average UV Intensity

 $I_{avg} = I_0 \overline{\left(1 - e^{-\alpha d}\right)}$


Hydraulic Contact Time

 $t = \frac{V_{reactor}}{}$

UV Dose

 $UV \ Dose = I_{avg} \cdot t \cdot \frac{\Theta}{t} \cdot F_h \cdot F_p \cdot F_t$

Top view projection of the RO system

Results The project focused on designing and enhancing a Reverse Osmosis (RO) water treatment system at Ban Khok Sung Wittaya School, using brackish groundwater as the raw water source. The RO system includes a granular filter, activated carbon, ion exchange, and a cartridge filter as pre-treatment stages. To ensure safe, high-quality drinking water, a UV system is installed after the RO process.

A cost analysis found that while the initial installation cost was higher than purchasing drinking water, the system could break even within 6.31 years. The annual operating costs, operating costs, including maintenance, were lower than the cost of buying bottled water. This makes the project a cost-effective and sustainable solution, significantly reducing the school's water expenses.