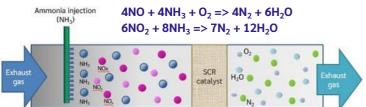
Design of NO_x Treatment System for Coal Power Plant

Quick Facts

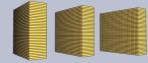
- Coal as its main fuels is burned to generate electricity
- Air Pollution : Nitrogen oxides, which harm air quality
- Selective Catalytic Reduction (SCR) reduces NO_x emissions

Objectives


- To study occurrence and theories rerated to NO_x
- To study the NO_x treatment process by SCR
- To design SCR for NO_x treatment

- Nowadays, natural resources are essential for energy production, leading to the establishment of numerous thermal power plants. In Thailand, thermal power plants primarily rely on natural gas and coal as fuel sources. **This study focuses on coal as the main fuel.** Several coal-fired power plants operate in the country, including Mae Moh, BLPC, and Krabi power plants. However, coal power plants raise significant environmental concerns due to the emission of various pollutants, particularly CO, CO₂, SO₂, Dust, and NO_x. **This study specifically focuses on NO_x emissions**.
 - Secondary pollution
 - Acid rain
 - Soil contaminate
 - Damage to the human
 - Chronic lung disease

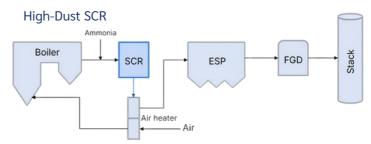
What is Selective Catalytic Reduction (SCR)?


- SCR system effectively treats NO_x.
- It injects ammonia into the flue gas upstream of the catalyst, where NO_x reacts with NH_3 and O_2 to produce N_2 and $H_2O.$

Catalyst

- The catalyst accelerates the reaction between NO_x and NH_3 , efficient reduction of NO_x to N_2 and H_2O .
- Vanadium pentoxide (V₂O₅) is the most commonly used catalyst due to its high efficiency in reducing NO_x.
- The structure of the catalyst is Honey Chrome.

N, , H,O



NH,

Honey Chrome SCR Catalyst

- Announcement of Ministry of Natural Resources and Environment NO_x ≤ 200 ppm
- Announcement of Department of Industrial Works
 - Power plant used coal as a fuel 200 ppm

SCR Configuration

High-Dust SCR is a NO_x reduction system installed before the electrostatic precipitator (ESP), utilizing a catalyst to effectively reduce NO_x emissions in flue gas. This system is widely favored due to its cost-effectiveness and simple structure.

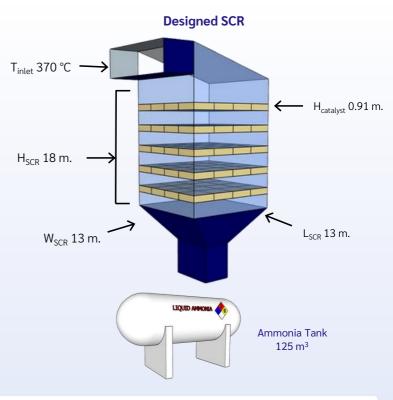
- **Cost-effective and easy to install** : Does not require a gas-cleaning system before entering the SCR
- **Operates at an optimal temperature** : The installation position ensures that the flue gas temperature remains
- Low energy consumption

With these advantages, High-Dust SCR is an ideal choice for power plants and industries seeking an efficient and cost-effective NO_x reduction solution.

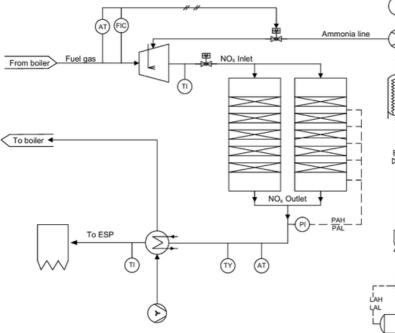
Ammonium Hydroxide (NH₄OH)

An aqueous solution of ammonia (NH_3) dissolved in water. It is commonly used in various industrial applications, including SCR systems for NO_x reduction.

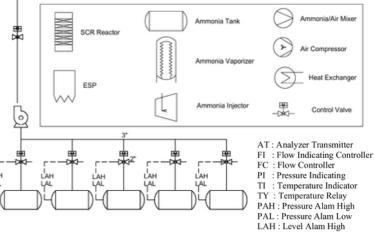
Advantages


Disadvantage

- Safer to handle
- Easier to transport and store
- Lower ammonia concentration
- Requires more energy for evaporation



Ammoniam hydroxide Design Equations


Design Equations		
V _{catalyst}	Vol _{catalys} =2.81×Q _B × n _{adj} ×slip _{adj} ×NO _{xadj} ×S _{adj} × N _{SCR}	
A _{catalyst}	$A_{catalyst} = \frac{q_{fluegas}}{\left(\frac{16 \text{ ft}}{\text{sec}}\right) \times \left(\frac{60 \text{ sec}}{\text{min}}\right)}$	
A _{SCR}	A _{SCR} =1.15×A _{catalyst}	
V _{SCR}	∀ _{SCR} =A _{SCR} × L	
V _{ammonia tank}	∀ _{tank} =q _{sol} ×t _{storge} ×24	
Design Parameter	Value	Unit
m _{fuel}	10,000	ton/day
NOx _{inlet}	0.11	g/MJ
9 _{flue gas}	708.78	m³/s
q _{flue}	0.88	g/MJ
Q _B	1611.50	MW
Efficiency	90%	
NOx _{outlet}	0.01	g/MJ

Piping and Instrumentation Diagram

P&ID the SCR process for NO_x treatment, incorporating measurement instruments like temperature (TI), pressure(PI), and flow indicators (FI). It details the ammonium hydroxide (NH₄OH) injection unit, which acts as a reagent in NO_x reduction. Through catalytic reaction, NO_x is converted into nitrogen(N_2) and water vapor(H_2O) before atmospheric release.

Conclusions

• The SCR system is designed to reduce NO_x levels to 138.5 ppm. with 90% efficiency. A high-dust SCR configuration is used, with dimensions of 18 m. in height, 13 m. in width, and 13 m. in length, featuring 5 catalyst layers, each with a height of 0.91 m.

• The system utilizes ammonia hydroxide (aqueous ammonia) for NO_x reduction, with a consumption rate of 543 m³ every 14 days, stored in 5 tank, each with a capacity of 125 m³

Cost Estimation		
Ammonia tank Tank	6,182,115 B (30 years)	
Ammonium Hydroxide	656,075.52 B (14 days)	
Catalyst	2,530,792.80 B (2-5 years)	
Sonic Soot Blower	336,900 B (10 years)	

LAL : Level Alam Low

3D SCR

Team member

Ref.

Advisor Assoc. Prof. Visanu Tanboonchuy Nichakan Sarabil | Ruksina Namkhem | Saitranthong Thonguthaisri | Warisara Phoomprasart

• TLT CONSULTANTS COMPANY LIMITED. 2021. EHIA of Mae Moh Replacement Power Plant Project Units 8-9 of the Electricity Generating Authority of Thailand(EGAT). Available form: https://eia.onep.go.th/eia/detail?id=10439 U.S. Environmental Protection Agency. 2019. Chapter 2 Selective Catalytic Reduction. Available form: https://www.epa.gov/sites/default/files/2017-12/documents/scrcostmanualchapter7thedition_2016revisions2017.pdf